Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Low-cost, non-empirical corrections to semi-local density functional theory are essential for accurately modeling transition-metal chemistry. Here, we demonstrate the judiciously modified density functional theory (jmDFT) approach with non-empirical U and J parameters obtained directly from frontier orbital energetics on a series of transition-metal complexes. We curate a set of nine representative Ti(III) and V(IV) d1 transition-metal complexes and evaluate their flat-plane errors along the fractional spin and charge lines. We demonstrate that while jmDFT improves upon both DFT+U and semi-local DFT with the standard atomic orbital projectors (AOPs), it does so inefficiently. We rationalize these inefficiencies by quantifying hybridization in the relevant frontier orbitals. To overcome these limitations, we introduce a procedure for computing a molecular orbital projector (MOP) basis for use with jmDFT. We demonstrate this single set of d1 MOPs to be suitable for nearly eliminating all energetic delocalization and static correlation errors. In all cases, MOP jmDFT outperforms AOP jmDFT, and it eliminates most flat-plane errors at non-empirical values. Unlike DFT+U or hybrid functionals, jmDFT nearly eliminates energetic delocalization and static correlation errors within a non-empirical framework.more » « less
-
Strategies for machine-learning (ML)-accelerated discovery that are general across material composition spaces are essential, but demonstrations of ML have been primarily limited to narrow composition variations. By addressing the scarcity of data in promising regions of chemical space for challenging targets such as open-shell transition-metal complexes, general representations and transferable ML models that leverage known relationships in existing data will accelerate discovery. Over a large set (∼1000) of isovalent transition-metal complexes, we quantify evident relationships for different properties (i.e., spin-splitting and ligand dissociation) between rows of the Periodic Table (i.e., 3d/4d metals and 2p/3p ligands). We demonstrate an extension to the graph-based revised autocorrelation (RAC) representation (i.e., eRAC) that incorporates the group number alongside the nuclear charge heuristic that otherwise overestimates dissimilarity of isovalent complexes. To address the common challenge of discovery in a new space where data are limited, we introduce a transfer learning approach in which we seed models trained on a large amount of data from one row of the Periodic Table with a small number of data points from the additional row. We demonstrate the synergistic value of the eRACs alongside this transfer learning strategy to consistently improve model performance. Analysis of these models highlights how the approach succeeds by reordering the distances between complexes to be more consistent with the Periodic Table, a property we expect to be broadly useful for other material domains.more » « less
-
Abstract Machine learning (ML) has become a central focus of the computational chemistry community. I will first discuss my personal history in the field. Then I will provide a broader view of how this resurgence in ML interest echoes and advances upon earlier efforts. Although numerous changes have brought about this latest wave, one of the most significant is the increased accuracy and efficiency of low‐cost methods (e. g., density functional theory or DFT) that have made it possible to generate large data sets for ML models. ML has also been used to bypass, guide, or improve DFT. The field of computational chemistry thus finds itself at a crossroads as ML both augments and supersedes traditional efforts. I will present what I believe the role of the computational chemist will be in this evolving landscape, with specific focus on my experience in the development of autonomous workflows in computational materials discovery for open‐shell transition‐metal chemistry.more » « less
-
Abstract As machine learning (ML) has matured, it has opened a new frontier in theoretical and computational chemistry by offering the promise of simultaneous paradigm shifts in accuracy and efficiency. Nowhere is this advance more needed, but also more challenging to achieve, than in the discovery of open‐shell transition metal complexes. Here, localizeddorfelectrons exhibit variable bonding that is challenging to capture even with the most computationally demanding methods. Thus, despite great promise, clear obstacles remain in constructing ML models that can supplement or even replace explicit electronic structure calculations. In this article, I outline the recent advances in building ML models in transition metal chemistry, including the ability to approach sub‐kcal/mol accuracy on a range of properties with tailored representations, to discover and enumerate complexes in large chemical spaces, and to reveal opportunities for design through analysis of feature importance. I discuss unique considerations that have been essential to enabling ML in open‐shell transition metal chemistry, including (a) the relationship of data set size/diversity, model complexity, and representation choice, (b) the importance of quantitative assessments of both theory and model domain of applicability, and (c) the need to enable autonomous generation of reliable, large data sets both for ML model training and in active learning or discovery contexts. Finally, I summarize the next steps toward making ML a mainstream tool in the accelerated discovery of transition metal complexes. This article is categorized under: Electronic Structure Theory > Density Functional Theory Software > Molecular Modeling Computer and Information Science > Chemoinformaticsmore » « less
An official website of the United States government
